Conservation of Mechanical Energy SPH4C

Starting with gravitational potential energy	
An object of mass 3.0 kg is suspended at a height of 12 r Calculate its gravitational potential energy:	n above the ground.
στο το στο το σ το το στο στο στο στο στο στο στο στο στ	
Calculate its kinetic energy:	
The object is released	
The object is released and hits the ground at a speed of when it hits the ground?	15.3 m/s. What is its kinetic energy
Calculate its gravitational potential when it hits the ground	
Our energy has been entirelykinetic energy.	from gravitational potential to
But the total mechanical energy of the object $(E_g + E_k)$	
Conservation of Energy: In general, if no	is being done on the object by an
outside force, the total mechanical energy of the system	will remain:
Note that in real life, energy is never transformed with	:
a ball dropped from a given height will never bounce back	k up to that same height.

Some energy is always "lost" as	energy or	energy because of
However, just as	we often neglect friction, w	e will often neglect these losses.
Efficiency is the of input:	of useful energy or work ou	tput to the total energy or work
Example 1: A model rocket engine energy. Calculate how efficient gravitational potential energy if the	ly the rocket transforms	stored chemical energy into
Alternately, efficiency is also the rainput:	itio of the useful	output to the
Example 2: A 120-W motor acceler Calculate the motor's efficiency.	ates a 5.0-kg mass from re	est to a speed of 4.0 m/s in 2.0 s.

More Practice

Match each position on the path of the 50-kg ski jumper at left to its gravitational potential and kinetic energies on the right. One combination of energies will be used more than once.

- A. $E_k = 50\ 000\ J$ $E_a = 0 J$
- В. $E_k = 20\ 000\ J$ $E_a = 30\,000\,\mathrm{J}$
- C. $E_k = 35\,000\,\mathrm{J}$ $E_q = 15\,000\,\mathrm{J}$
- D. $E_k = 0 J$ $E_a = 50\,000\,\mathrm{J}$
- 1. An object is lifted to some height and then dropped. During the drop, which of the following is increased?
 - A. gravitational potential energy
- B. kinetic energy
- C. total mechanical energy
- D. both B and C
- 2. An object is lifted to some height and then dropped. During the drop, which of the following is decreased?
 - A. gravitational potential energy
- B. kinetic energy
- C. total mechanical energy
- D. both A and C
- 3. A projectile is launched from ground level. At the highest point in its trajectory its total mechanical energy is ______ its total mechanical energy at its launch position.
 - A. less than
- B. equal to
- C. greater than
- D. It cannot be determined.
- An object is launched from ground level at a velocity of 5 m/s [37° above the horizontal]. 4. Neglecting air resistance, what is the speed of the object when it hits the ground again?
 - A. 3 m/s
- B. 4 m/s
- C. 5 m/s
- D. It cannot be determined.
- 5. Coin A is thrown up in the air at a speed v from an height of h. Coin B is thrown down at the same speed from the same height. Which coin hits the ground at the highest speed?
 - A. Coin A

- B. Coin B
- C. They hit the ground at the same speed. D. It cannot be determined.